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Abstract—A major insight from our previous work on ex-
tensive comparison of superpixel segmentation algorithms is
the existence of several trade-offs for such algorithms. The
most intuitive is the trade-off between segmentation quality and
runtime. However, there exist many more between these two and
a multitude of other performance measures. In this work, we
present two new superpixel segmentation algorithms, based on
existing algorithms, that provide better balanced trade-offs. Bet-
ter balanced means, that we increase one performance measure
by a large amount at the cost of slightly decreasing another. The
proposed new algorithms are expected to be more appropriate
for many real time computer vision tasks. The first proposed
algorithm, Preemptive SLIC, is a faster version of SLIC, running
at frame-rate (30 Hz for image size 481x321) on a standard
desktop CPU. The speed-up comes at the cost of slightly worse
segmentation quality. The second proposed algorithm is Compact
Watershed. It is based on Seeded Watershed segmentation, but
creates uniformly shaped superpixels similar to SLIC in about
10 ms per image. We extensively evaluate the influence of the
proposed algorithmic changes on the trade-offs between various
performance measures.

I. INTRODUCTION

Superpixels are a special case of an image oversegmenta-
tion or - seen the other way around, a perceptual grouping of
pixels. They have become key building blocks of many image
processing and computer vision algorithms. They are used for
object recognition [1], segmentation [2], scene change predic-
tion [3], multi-class object segmentation [4], depth estimation
[5], body model estimation [6] and many other tasks. Inspired
by this multitude of applications, a considerable number of
superpixel segmentation algorithms has been proposed. Im-
portant performance measures for superpixel algorithms are:

e  Segmentation quality (e.g. boundary recall, underseg-
mentation error, segmentation stability)

e Runtime

e  Characteristics of the superpixel size, shape and dis-
tribution over the image plane

A main insight from our previous work [8][9] with su-
perpixels is that each algorithm is a trade-off between these
performance measures. In theory, there may exist a perfect su-
perpixel segmentation algorithm, that runs sufficiently fast and
provides the perfect segments for the subsequent processing
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Fig. 1. In this work we propose two new adaptions of existing algorithms that
change the balance in trade-offs of superpixel segmentation algorithms. The
three colored axes visualize a set of typical trade-offs: segmentation quality
measures, runtime and appropriate segmentation characteristics for subsequent
processing steps (e.g. similar size). The application of the segmentation results
may give a weighting to the different axes. But in general, a triangle with larger
area indicates a better segmentation algorithm. The proposed Preemptive SLIC
algorithm is a much faster version of SLIC [7], running at frame-rate (30
Hz) on a standard desktop CPU. This comes at the cost of slightly worse
segmentation quality. The proposed Compact Watershed algorithm is a simple
extension of a seeded watershed segmentation, that conserves the high speed
and gives the user control over the compactness of the segments.

steps. However, in practice, we have to look for the existing
algorithm that provides the best balanced trade-off for the task
at hand.

In this paper, we present two new adaptions of superpixel
segmentation algorithms that better balance important trade-
offs. Fig. 1 illustrates the main contributions of this paper.
First, we present an adaption of SLIC [7], Preemptive SLIC,
that preserves the high segmentation quality level of the
original implementation and runs at 30 Hz on a standard
desktop CPU. Therefore we propose changes on the algo-
rithm, that adjust the trade-off between runtime and quality
in favor of a frame-rate execution. We evaluate the positive
and negative effects on segmentation quality and stability in
detail based on our previously published benchmarks. Second,
after speeding up a good algorithm, we try to improve the
segmentation of a very fast algorithm: Seeded Watershed
[10]. For application as typical superpixels the main issue
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Fig. 2. Example segmentations. From left to right: SLIC, the proposed Preemptive SLIC, Watershed and the proposed Compact Watershed. Preemptive SLIC is
three times faster than SLIC and results in similar segmentations. One can see how the segment borders are closer to the initial rectangular shape at homogeneous
image regions. The third colum shows seeded Watershed segmentations. The irregular segment size and shape are clearly visible. The compactness constraint of
Compact Watershed makes the segmentation much more regular (parameter ¢ = 1). This improves undersegmentation error and motion discontinuity error but
comes at the cost of lower boundary recall. Compact Watershed takes about 10 ms to segment an image of size (481 x 321) using a standard desktop CPU.

with Watershed segmentations is the highly irregular size and
shape of the resulting segments. We propose and evaluate the
extension with a compactness constraint that turns Watershed
segmentation from an oversegmentation algorithm into a real
superpixel algorithm. This shifts the balance at several trade-
offs between metrics for segmentation quality, stability and
runtime which we are going to evaluate in detail in the results
section. Furthermore, we provide open source implementations
of the two new adapted algorithms on our website!.

The next section sets this paper in the context of related
work, followed by descriptions of the algorithmic steps to
change the trade-offs for SLIC and Watershed segmentation.
The results section gives insights on the influences of the
proposed algorithmic changes on the properties of the seg-
mentations

II. RELATED WORK

There is no clean distinction between an oversegmentation
algorithm and superpixel segmentations. By consensus, an
oversegmentation with more or less regularly shaped segments
of similar size, that are uniformly distributed over the image
plane is considered a superpixel segmentation. Thus each
superpixel segmentation is an oversegmentation (but not vice
versa). Nevertheless, in the following we use the term over-
segmentation for oversegmentations that are not a superpixel
segmentation. There exists a wide range of algorithms for
both types. Extensive comparison of existing algorithms is
beyond the scope of this paper but can be found in our prior
work [8][9]. These comparisons reveal significant trade-offs

Uhttp://www.tu-chemnitz.de/etit/proaut/forschung/superpixel.html

in the existing algorithms. The most intuitive is the trade-
off between segmentation quality and runtime. Moreover, at
some metrics, oversegmentation algorithms perform better than
superpixel algorithms, e.g. boundary recall. At boundary recall,
neither regularly shaped segments nor a grid like distribution
are helpful. For other metrics, e.g. undersegmentation error,
constraints on the size and shape of the segments help to
prevent segments from growing unbounded at homogeneous
image regions. Such constraints also influence the stability
of segmentations. From the existing algorithm comparisons
on segmentation quality [9] and stability [8] we choose two
interesting examples for trade-offs:

e SLIC shows good quality and stability but at lower
speed

e  Watershed shows worse quality and stability, but at
very high speed

In this paper we present approaches to do both: to speed up
the good-but-slow algorithm SLIC and to improve the worse-
but-fast algorithm Watershed.

We are not the first laying hands on these well-know
algorithms. E.g. there exists a frame-rate GPU version of SLIC
[11] and for sure there exist various implementations and
distance metrics for watershed segmentation, e.g. see [12] for
an overview. However, to the best of our knowledge, we are the
first to present a frame-rate CPU version of SLIC and a ready-
to use compact superpixel segmentation based on watersheds.
Moreover, we evaluate the properties of the new algorithms in
detail.

In the following sections, we briefly introduce the proposed
algorithms. We start with speeding up SLIC followed by



details on how we introduced compactness in a Watershed
segmentation.

ITI. PREEMPTIVE SLIC: MAKING A GOOD ALGORITHM
FASTER

Simple Linear Iterative Clustering (SLIC) is based on the
concept of a local k-means clustering. The cluster centers are
initialized on a uniform grid in the image plane. Local k-means
denotes that each cluster considers only pixels in its spatial
neighborhood. The metric during clustering is a weighted
combination of color distance and spatial distance in the image
plane. The weight of the spatial component (the “compactness”
parameter) influences the regularity of the resulting segments
shape and size.

SLIC provides good segmentation quality and stability and
can be considered as state of the art in superpixel segmentation.
Although SLIC belongs to the class of faster superpixel
algorithms (e.g. compared to Normalized Cuts), the runtime
of about 100 ms can be considered the main drawback (e.g.
compared to Watershed). In the following we present our
approach on speeding up SLIC by about factor 3. The results
section evaluates the impact of this shift in the trade-off
between quality and runtime.

Starting from the implementation of Achanta et. al?, we
speed up SLIC in two steps: The first is a simple but effective
code optimization (dropping runtime from about 100 ms to 50
ms). This is followed by an algorithmic approximation of the
original algorithm, yielding a final runtime of about 33 ms on
images of size (481 x 321).

A. Code optimized SLIC

A runtime analysis of the original implementation shows,
that more than half the time is spent for color conversions
from RGB to LAB. There exist several fast approximations
and implementations for this color space conversion. So the fist
change is a simple replacement of the original color conversion
algorithm with the one provided by OpenCV?. Section V gives
insights on the resulting benefit for the runtime and a slight
decrease in segmentation quality.

B. Preemptive SLIC

As second step, we propose an approximation of the orig-
inal algorithm. The main idea behind SLIC is to use k-means
in a local manner by reducing the potential member pixels for
each cluster to a local neighborhood. However, this is just half-
way gone: SLIC uses a single, global termination criterion.
We propose to use a local termination criterion for each
cluster to avoid revisiting clusters and image areas without
any major changes since the last iteration. This preemptively
stops the evolution of segment boundaries in homogeneous
image regions. The termination criterion of the original SLIC
algorithm is the following:

If the maximum number of iteration is reached or if there
is no major change in any cluster, the algorithm finishes.

Zhttp://ivrg.epfl.ch/research/superpixels
3http://opencv.org

In fact the original implementation uses a fixed number
of 10 iterations. However, this way, potentially large image
parts without any changes in the previous iteration(s) are
updated every new iteration of the main k-means loop. Thus,
we propose to introduce an individual termination criterion for
each cluster:

If there has not been any major change in this cluster or
any neighboring cluster in the last iteration, do not update this
cluster.

The global termination criterion remains almost unchanged:

If the maximum number of iterations is reached or no
cluster has been updated, we are done.

This significantly reduces the number of pixel accesses
at homogeneous image regions. Even if the same number
of iterations in the main loop are processed, not all clusters
are updated in each iteration. However, a cluster that has
not been updated in one iteration can become active in the
next if a cluster in its neighborhood had a major change. So
the additional computational overhead reduces to counting the
number of added or removed pixel for each cluster and to
evaluate this number for each cluster and its neighborhood
before deciding whether to update this cluster or not in the
current iteration. The effects on segmentation quality and
runtime are evaluated in the results section V.

IV. COMPACT WATERSHED: GETTING FROM
OVERSEGMENTATIONS TO SUPERPIXELS

Watershed segmentation is a very fast algorithm. However,
it suffers from irregularly sized and shaped segments and
strongly varying boundaries. The user has no influence on
the segmentation characteristics. This section describes our
straight forward approach on incorporating a controllable com-
pactness constraint in a watershed segmentation to evaluate its
influence on segmentation quality and characteristics. In this
context, high compactness means that the superpixels are of
approximately equal size and more or less regularly shaped in
the absence of strong image gradients (e.g. like a recangle or
a circle).

The idea of watershed segmentation origins from [13]. The
intuitive idea comes from geography: when a landscape is
flooded by falling waterdrops, dependent on the amount of
water there are basins filled with water and dividing ridges
between them. These ridges are the watersheds. Since water-
shed segmentation is a well known algorithm, there are various
algorithmic implementations and adaptions. We start from
the OpenCV implementation of the algorithm following [10].
OpenCV implements a seeded watershed segmentation (also
called marker controlled watershed). The seeds are externally
provided to the algorithm, e.g. as local gradient minima or
for superpixel-like segmentation on a uniform grid. The seeds
grow iteratively pixel by pixel until they reach a border to
the segment around another seed. These borders form the
watersheds. The next seed to expand by one pixel is chosen
based on a distance function. In the OpenCV implementation,
this distance function only incorporates the intensity or color
value of the pixels. This results in strongly varying borders in
homogeneous image regions and potentially highly irregularly
shaped segments in the presence of image gradients.



To influence the compactness of the segmentation, we
propose the simple extension of incorporating the distance to
the seed point as well. This is very similar to the compactness
component in SLIC. The resulting distance metric is the
weighted combination of the conventional appearance based
distance and the euclidean distance of the pixel to the segment
seed. This results in a constraint on the size and elongation of
the segments and thus favors the creation of compact segments.

Fig. 2 shows the strong impact on the visual appearance of
the segments, their shape, size and distribution on the image
plane. The following section evaluates the influence of the
strength of the compactness parameter on various trade-offs
between quality, stability and runtime.

V. EXPERIMENTS AND RESULTS

In this section we compare the changes in the balance
of the trade-offs form SLIC to Preemptive SLIC and from
Watershed to Compact Watershed. The experiments build upon
our previously published superpixel benchmarks [8][9]. While,
in this work, we only compare the original algorithms with
their proposed extension, we refer the reader to our previous
work for a comparison with other algorithms (including e.g.
Normalized Cuts [14], Felzenszwalb-Huttenlocher Segmenta-
tion [15], Edge Augmented Mean Shift [16], Quickshift [17]
and Entropy Rate Superpixel Segmentation [18]).

A. Metrics for Comparison

The comparison is based on segmentation runtime, quality
and stability. Used datasets are the Berkeley Segmentation
Data Set BSDS500 [19] and the Sintel dataset [20]. We
evaluate the following metrics:

Runtime is measured as the average runtime on the 200
BSDS500 test images. The images are of size 482 x 321.
All computations are done on a Intel Core i7-3770 CPU @
3.40GHz with 16 GB RAM.

Boundary recall measures the rate of object boundaries
that are covered by superpixel boundaries. The ground-truth
object boundaries are obtained as the manual labels in the
BSDS500 dataset. We follow [9]: Given a ground truth
boundary image G, the algorithms boundary image B and a
maximum distance d = 1. TP (True Positives) is the number
of boundary pixels in G for whose exist a boundary pixel in
B in range d. FN (False Negatives) is the number of boundary
pixels in G for whose does not exist a boundary pixel in B in
range d. Then boundary recall is BR = 75

Undersegmentation error is a somehow contrary measure
to boundary recall. Algorithms with high boundary recall often
have a high undersegmentation error. It measures how well
ground-truth object segments can be recovered as combination
of superpixels. Again, for computation of the metric, we follow
[9]: Each ground truth segment S divides a superpixel P in
an P;, and an P,,; set of pixels. Being /N the total number
of pixels, undersegmentation error is computed as:

USE = % Z Z min(Pina Pout) (1)

SeEGT \ P:PNS#(

Motion undersegmentation error evaluates the stability
of a segmentation algorithm by comparing segmentations of
consecutive frames of a video. This measure is based on
ground-truth optical flow information about the motion of
each pixel from one frame to the other. It measures how
well the segmentation algorithm finds the same regions or
object boundaries independent of changes in the image. We
use the equations and data provided in [8]: Being L; and
Lo segmentations of images connected through ground-truth
optical flow field F', then LI is the result of applying F on L.
Similar to undersegmentation error, we compute the motion
undersegmentation error as:

1
MUSE:N Z Z
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Motion discontinuity error is also based on ground-truth
optical flow data. It measures how well motion discontinuities
in the image sequence are represented by the superpixel
boundaries. Again, we use the equations and data from [8]:
Given F|, a ground truth optical flow field from an image [
to another image, B the boundary image of a segmentation of
image I, and D(B) the distance transform of B containing for
each pixel the distance to the nearest segment boundary, we
define the Motion Discontinuity Error (MDE) as follows:

E(i,j)e[ ||VF(ZaJ)||2 . D(B(Zaj))

MDE = . i
2 jer IVF(@E, 52

3)

For good performance at MDE metric, a superpixel al-
gorithm should place segment boundaries between differently
moving image parts. We start with the evaluation of Preemptive
SLIC, followed by results on Compact Watershed.

B. Results on Preemptive SLIC

Fig. 3 (left) shows the runtime improvement for the
code optimized version of SLIC and Preemptive SLIC. Code
optimization decreased the runtime from about 100 ms for
typical superpixel segment numbers, down to about 50 ms. In
combination with the proposed local termination criterion, the
resulting Preemptive SLIC algorithm takes about 33 ms and
runs at frame rate (30 Hz) on a standard desktop computer.
SLIC already showed to be well balanced at segmentation
quality and stability before [8]. The boundary recall and
undersegmentation error measurements in Fig. 3 show the
slight decrease in segmentation quality for the code optimized
version and Preemptive SLIC. The larger decrease comes from
the code optimization, although it only changes the imple-
mentation of the color space transformation. The preemptive
termination causes a comparatively small additional loss.

The general similarity between the original SLIC and Pre-
emptive SLIC segmentation results can be seen in the example
segmentations in Fig. 2. The local termination criterion and
the resulting preemptive stop of the evolution of superpixel
boundaries cause segments to remain more similar to the initial
grid-like shape. This manifests as straight vertical or horizontal
segment borders in homogeneous images areas. Since there is
only few or even no cause for a deviation from the initial shape
in the underlying image data at such homogeneous image
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Fig. 3.  'We compared the original SLIC algorithm, the code optimized version and Preemptive SLIC on the BSDS500 dataset. The left plot shows the runtime

improvement for the code optimized version and Preemptive SLIC. This comes at a slight decrease in boundary recall and higher undersegmentation error from
the original SLIC to the code optimized version and further to Preemptive SLIC. (Boundary recall: higher is better; Undersegmentation error: lower is better;

Runtime: lower is better, logarithmic scale)

regions, remaining such borders unchanged may improve the
segmentation stability. Experiments on the ground-truth optical
flow data support this assumption by showing a clear improve-
ment in motion undersegmentation error, Fig. 4 (left). As a
reminder, motion undersegmentation error measures how well
segmentations of consecutive frames of a video agree based
on ground-truth knowledge about the motion of each pixel.
Again, the improvement in segmentation stability shifts the
balance in a trade-off: the detection of motion discontinuities
becomes slightly worse, see Fig. 4 (right).

C. Results on Compact Watershed

Watershed is a very fast algorithm. Evaluation on the
BSDS500 dataset shows a runtime of about 8 ms for an image
of size (481 x 321). A short look at the example segmentation
in the third column of Fig. 2 reveals the main problem with
Watershed segmentation: Although the seeds are initialized on
a regular grid, the segments vary strongly in shape and size.
The resulting segments of the proposed Compact Watershed
(see fourth column in Fig. 2) are significantly more regu-
larly distributed and shaped. However, they still follow object
boundaries in the presence of sufficient image gradients. The
results of the experiments on the BSDS500 dataset in Fig.
5 show the impact of the compactness constraint on the seg-
mentation quality and runtime. The weight of the compactness
constraint is controlled by the parameter c. ¢ = 0 results in
a standard seeded watershed segmentation. A strong compact-
ness constraint prevents the segment borders to freely follow
image gradients. The resulting negative influence on boundary
recall can be seen in Fig. 5 (left). So for pure boundary recall,
a low compactness strength is favorable. At undersegmentation
error the compactness constraint has two effects: On one
hand, it decreases the error since it prevents precarious large
segments that may result in high reconstruction penalties in
the undersegmentation error computation. On the other hand,
if the compactness constraint is too strong, it may cumber
the adaption of superpixel segment borders to image gradients
and thus to object borders. Fig. 5 (mid) reveals ¢ = 1 as
best choice for the strength of the compactness constraint. All
other experiments use this setting. The additional computations
for the extended distance function and the resulting changes
in the evolution of the segments cause a slight increase in
runtime. The stronger the compactness constraint, the larger
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Fig. 4. Evaluation of Preemptive SLIC on the ground-truth optical flow
dataset. The boundaries of Preemptive SLIC are more regular in homogeneous
image regions since the local termination criterion stops optimization earlier.
This shifts the balance between motion stability and coverage of motion dis-
continuities: Preemptive SLIC produces more stable segmentations indicated
by a lower motion undersegmentation error. This comes at the cost of fewer
detected motion discontinuities. (At both metrics: lower is better)

the additional runtime. For ¢ = 1 this is about 1 ms for typical
segment numbers.

The shift in the balance of trade-offs continues at the eval-
uation on the ground-truth optical flow dataset. For Compact
Watershed the changes are vice versa to Preemptive SLIC. The
compactness constraint is an influence on the segmentation that
is not supported by any apparent image content. Therefore
segment boundaries introduced by the compactness constraint
do not move according to the image motion and are thus
unstable. This effect is partially compensated by avoiding
large segments that lay in differently moving image parts.
The evaluation on the ground-truth optical flow dataset support
this observation (Fig. 6): the motion undersegmentation error
slightly increases while the motion discontinuity error slightly
improves.

VI. CONCLUSION

We presented two adaptions of superpixel segmentation
algorithms and evaluated the changes in trade-offs between
various performance measures. The first new algorithm is
Preemptive SLIC. It runs at frame-rate (30 Hz) on a standard
desktop CPU and conserves the high segmentation quality level
of SLIC. The runtime improvement comes from two step:
an optimized implementation and an preemptive termination
criterion for each local cluster. Preemptive SLIC also showed
to create more stable segmentations.
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Fig. 6. Evaluation of Compact Watershed on the ground-truth optical flow

dataset. Compactness is an appearance independent influence on the segment
boundaries. This can decrease the segmentation stability as can be seen in the
left plot. In contrast, the compactness also puts a constraint on the maximum
distance of an image pixel to the nearest segment border and thus helps
to cover motion discontinuities that are not indicated by image edges. The
resulting improvement in motion discontinuity error can be seen in the right
plot. (At both metrics: lower is better)

The second algorithm is Compact Watershed. It incorpo-
rates a compactness constraint in a seeded watershed segmen-
tation and gives the user control over important characteristics
of the segmentation. This turns Seeded Watershed from an
oversegmentation algorithm to a real superpixel segmentation
algorithm. The compactness is controlled with a single param-
eter. Compact Watershed takes about 10 ms for segmentation
of an image of size (481 x 321).

We evaluated the influence of the algorithmic changes on
the trade-offs between various performance measures. The
individual importance of the different performance indicators
depends on the application of the resulting segmentations.
However, the proposed algorithms improve some performance
measures for a large amount, while only slightly decreasing
others. Open source implementations of both algorithms are
provided on our website noted at the first page.
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